皂液器厂家
免费服务热线

Free service

hotline

010-00000000
皂液器厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

看一看:看一看;硅衬底上GaN基LED的研制进展

发布时间:2021-11-18 17:55:23 阅读: 来源:皂液器厂家

Ⅲ 族氮化物半导体材料广泛用于紫、蓝、绿和白光发光2极管,高密度光学存储用的紫光激光器,紫外光探测器,和高功率高频电子器件。但是由于缺少合适的衬底被强制拆迁后如何诉讼,目前高质量的GaN膜通常都生长在蓝宝石或SiC衬底上,但是这两种衬底部都比较昂贵,特别是碳化硅,而且尺寸都比较小。蓝宝石还有硬度极高和不导电的缺点。为克服上述缺点,人们在用硅作衬底生长GaN方面1直不断地进行探索。由于GaN材料的电荧光对晶体缺点其实不敏感,因此人们预期在Si衬底上异质外延生长Ⅲ族氮化物发光器件在降落本钱方面具有明显的技术优势。人们还期待使用Si衬底今后还有可能将光发射器与硅电子学集成起来,将加速和扩大氮化镓在光电子和微电子方面的利用。1、用硅作GaNLED衬底的优缺点用硅作GaN发光2极管(LED)衬底的优点主要在于LED的制造本钱将大大降落。这是不但由于Si衬蓝本身的价格比目前使用的蓝宝石和SiC衬底便宜很多,而且可以使用比蓝宝石和SiC衬底的尺寸更大的衬底(例如使用4英寸的Si片衬底)以提高MOCVD的利用率,从而提高管芯产率。Si和SiC衬底1样,也是导电衬底,电极可以从管芯的两侧引出,而没必要象不导电的蓝宝石那样必须都从1侧引出,这样不但可以减少管芯面积还可以省去对GaN外延层的干法腐蚀步骤。同时由于硅的硬度比蓝宝石和SiC低,因此使用LSI加工中使用的通用切割设备就可以够切出LED芯片,节省了管芯生产本钱。另外,由于目前 CaAs工业正从4英寸过渡到6英寸,淘汰下来的4英寸工艺线征地合同不公平怎么办,正好可以用在硅衬底的GaNLED生产上。据日本Sanken电气公司的估计使用硅衬底制作蓝光GaNLED的制造本钱将比蓝宝石衬底和SiC衬底低90%,预期在需要低功率发射器方面将获得利用。但是与蓝宝石和SiC相比,在Si衬底上生长GaN更加困难。由于这2者之间的热失配和晶格失配更大。硅与GaN的热膨胀系数差别将导致GaN膜出现龟裂,晶格常数差会在 GaN外延层中造成高的位错密度。GaNLED还可以由于Si与GaN之间有0.5V的异质势垒而使开启电压升高和晶体完全性差造成P-型掺杂效率低,导致串联电阻增大。使用Si衬底的另外1不利的地方是,硅吸收可见光会降落LED的外量子效率。虽然如此自1998年以来在硅上氮化镓LED方面已取得了很多令人兴奋的结果。2、缓冲层技术为了在Si上制造出性能好的GaN LED,首先要解决的是如何在Si上生长出高质量的无龟裂的GaN外延层。现在主要的生长方法是MOCVD或MBE.不管采取那种生长方法在Si上生长GaN外延层,均需要使用缓冲层技术。已报道了多种缓冲层技术。其中包括:AIN,3C-SiC(淀积的或转化的SiC膜),GaAs,AlAs,ZnO,LiGaO2,g-Al2O3和Si3N4,或复合缓冲层;如AlN/3C-SiC,AlN/GaN/AlN等等。AlN缓冲层是目前较为普遍使用的缓冲层技术之1。Liaw等人报道了采取转化的 SiC膜加氮化铝复合缓冲层(AlN/3C-SiC)技术已可以在4英寸的Si(111)衬底上生长出1.5mm厚的无龟裂的GaN的外延层。日本3垦(Sanken)电气公司与名古屋工业大学联合开发出用AlN/GaN缓冲层减缓因热膨胀系数不同而产生的热应力,进而控制了龟裂的产生。值得指出的是3垦电气在生长缓冲层前行政强拆的法定程序,首先对硅衬底进行处理,使硅表面上覆以氢(H),这样就得到了不含氧(O)的、适于“低温缓冲层”生长所需要的清洁平坦的硅表面,并且使发光层内的晶体缺点密度减少到109个/cm2.为了降落外延层中的位错密度,选择外延生长工艺也被利用到在Si生长GaN中来,包括横向选择外延和悬重外延生长(PENDEOPITAXY)。3、LED器件1998 年Guha等人最早采取MBE方法生长了UV和紫光GaN/AlGaN双异质结(DH)LED.衬底是掺砷的晶向为(111)低阻n型Si.缓冲层为 AlN.DH-LED结构为:Si(111)/8nm AlN/n-AlGaN:Si/6nm GaN/p-AlxGa1-xN:Mg/15nm p-GaN.他们发现衬底与外延层之间的晶向关系为:Si(111)/GaN(0001)和Si//GaN.TEM观测表明 8nm AlN已在Si上构成了厚度均匀的连续薄膜,估计其穿透位错密度高达5×1010cm⑵.在P侧使用Ni/Au电极;n电极则从Si衬底面引出。对 300×300mm的管芯,在4.5⑹.5V正向电压下开始发光。他们认为较高的工作电压是由于MBE生长的p型掺杂浓度低和p接触不良而至,而不是由于AlN的绝缘特性酿成的。绝缘的AlN中的大量位错可能起了短路电流通道的作用,使载流子从Si侧“漏”过去注入到GaN中。发光波长为360nm (掺Si-GaN有源层)和来自深能级的420nm峰(未掺录像机GaN有源层)。近期的工作大部分都采取InGaN/GaN多量子阱(MQW)结构,生长方法包括MOCVD和MBE和2者的结合,主要采取MOCVD.发射波长已扩大到蓝、绿光。Yang等人先用MBE方法在(111)n+Si衬底上生长AlN缓冲层,然后转移到MOCVD反应室中生长0.2mm厚掺硅n+GaN.接着在Si/(AlN/GaN)上淀积 0.2mm厚SiQ2层,用光刻法开出300×300μm的选择外延生长的窗口。然后,再将样品放入MOCVD反应室中连续生长0.5nm-GaN: Si,InGaN/GaN MQW和15nm的p-GaN.在选择外延生长的MQW-LED结构上面采取Pd/Au构成透明电极。n极(Ti/Al/Ti/Au)则从Si衬底面引出老房子在被强拆怎么处理。器件的发光波长为465nm,半高宽为40nm,与MQW的室温PL谱1致。正向开启电压为+3.2V,估计包括来自Si/(AlN/GaN)异质结势垒的0.5V贡献。正向微分电阻是250Ω左右街道办事处有权力强拆吗,比他们在蓝宝石上的LED大约大4倍。p型掺杂浓度低,p接触不良和AlN/Si界面微分电阻和来自 SiO2的Si反向掺杂多是电阻增加的缘由。Dalmasso等报道了首次用MOCVD方法在(111)Si上生长的绿光(508nm)的LED.其结构为0.5μm-GaN/0.1μmGaN/InGaN/20nmGaN/7nmp-Al0.15Ga0.85N/0.2μmp-GaN.其输出功率当为 20mA时是6mW.德国Magdeburg大学的Armin Dadgar在研制LED时,为了解决龟裂问题采取了两种方法:1、在图形衬底上生长台面结构,接着生长AlGaN/GaN超晶格以控制龟裂的构成和/或位置。对台面结构的LED来说,先在Si(111)上腐蚀出槽,接着淀积AlN缓冲层、15个周期的AlGaN/GaN超昌格和掺Si-GaN层。有源区为3个周期的InGaN/GaN量子阱,其上为p-AlGaN和p-GaN层。2、在平面衬底上,淀积AlN缓冲层和n-GaN层后,使用低温AlN应力衬偿层加上氮化硅薄掩膜层。其上再生长n-GaN、3个周期的InGaN/GaN量子阱有源区和p-AlGaN和p-GaN层。这两种方法制备的LED在20mA正向电流下都可以输出150mW的蓝光,这些结果对Si衬底来说是令人鼓舞的。虽然比在蓝宝石和碳化硅衬底上制造的商品LED 低,但已可以满足1些低功率利用要求。预期随着生长条件和器件个各层的优化,亮度还会提高,但是更大的挑战是进1步解决Si衬底对光的吸收问题。日本3垦电气公司与名古屋工业大学联合开发的蓝色及绿色GaN LED,虽然现在还处于试制阶段,其光输出功率已到达了手机背照灯等使用的高亮度量产品的 1/5.也就是说已获得了手机来电提示等用途所使用的通用LED1样的光输出功率,在通讯和显示用的低功率光发射器方面的利用引人关注。今后,通过对发光层的改进,量子效率还可以提高到目前的2倍左右。随着技术的改进,可望将开启电压从现在的+4.1V降到+3.5V,并增加功率效率。4、结语与目前使用的蓝宝石衬底和SiC衬底的GaN2极管(LED)相比,使用硅衬底后GaN LED的制造有本钱将大大降落。虽然现在还处于试制阶段,并且在硅上生长GaN难度高,硅还有吸收可见光的缺点,但是Si上生长的GaN LED在低功率利用方面的动向已引发人们关注。实际上,Si上生长GaN提供了1个更广泛的技术平台,由于硅的高导电和导热特性,除在光电器件方面的利用外,在微波和功率电子器件方面也有广阔的利用前景,而且提供将光发射器与硅电子学集成起来的可能性。(end)资讯分类行业动态帮助文档展会专题报道5金人物商家文章